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Fundamental Problems for High Resolution Resists

-Utilization of molecules and imaging -» Molecular resist platforms
schemes that possess a small “pixel” size
-Ability to resist pattern collapse -» Cross-linked organic

materials as final features

-Ability to tailor amplification level and Utilization of photo-
build in amplification to improve LER and -» responsive quenchers
resolution

-A design that can prevent resist -»
iInhomogeneity Small molecule resists

Georgia Institute of Technology School of Chemical & Biomolecular Engineering @



Molecular Resists 4

* Molecular glasses are low molecular-weight organic compounds that
readily form stable amorphous glasses

 Introduced to improve resolution
but had other issues for positive
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Molecular Resist

» Use for negative tone cross-linked
resists appears much more
favorable

« Good properties include: 5~10 nm
monOdiSperse & Synthetlc Contr0| ) Da Yang, et. al., J. Materials Chemistry:2006
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Neg. Tone MR with Catlonlc Cross-linking 0
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 There are mechanistic changes in the patterning that affect performance

« Photoacid is no longer the most important reaction species — active
cation instead — the cross-linking must be controlled, not the acid @
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Neg. Tone MR with Cationic Polvmerlzatlon °
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Potential advantages of cationic polymerization MRs
— superior mechanical strength
cross-linking increases modulus, improves pattern collapse
— Intrinsic diffusion control

active cation is covalently attached to end of growing chain/network
diffusivity decreases with extent of conversion

— low outgassing of resist
no mass loss during reaction vs. deprotection schemes
— reduced swelling vs. polymers
& higher cross-link density in MR reduces swelling
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Improved Mechanical Properties of Cross-linked -

Resists
« Using thin film bucking method, we can measure the modulus for ultra-thin

films (SPIE 76391I, 2010)

* Cross-linked MR show higher modulus than positive tone polymeric resists
both in bulk and ultra-thin films

« This leads to improved pattern collapse performance in negative tone resists
due to higher critical stress before collapse (JVST B 28, C6S6, 2010)

i

a)
[\
-
—»—
——

[#)
L

Effective modulus (GP

ESCAP-1

60

Thickness (nm)
M School of Chemical & Biomolecular Engineering @'

80 100 120 140 160 180 200 220




Polymer vs. Molecular Resists — 100 keV E-beam 8
Polymer - SU-8 MR - 2-Ep
55nm 1:2 50 nm 1:2 - ; |
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« Polymer shows inferior resolution and LER

« Differences likely due to cross-link (XL) density — MR require higher
extent of XL to reach full network = better mechanical properties
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Negative Tone Baseline °
« Multiple MR available, but 4-Ep (below) is baseline material for all EUV
 PAG: TPS-SbF; 5 mol%, Developed in MIBK (organic solvent)
« Lower contrast reduces performance in EUV compared to e-beam
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Controlling Cationic Cross-Linking 10
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Controlling Cationic Cross-Linking
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£04 r chain termination or reducing rate of
cross-linking reaction

0.2 —— 0 NHATf « Triflate anion can nucleophilically attack
—a— 1:3 NHATf:PAG growing chain to act as chain termination

0 - —— 111 NHATE.PAG agent and modifies rate of cross-linking

« Addition of ammonium triflate has strong

0 S 10 PR3 20 .
Dose (mJ/cm®) effect on cross-linking (left plot), but we

can do even better than this @
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Additive to Control Cationic Cross-Linking 12
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. Addltlon of TPS-Tf shows chain termination when
unexposed, but chain transfer when exposed
(photoacid is regenerated)

| DUV, 90 °C By adding TPS-Tf on top of a constant amount of
¢ TPS-SbF, (PAG at 5 mol%), we see immediate

effects on contrast (left plot)
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« This causes a shift in the contrast curve to higher
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Additive Enhances Performance

200nm EHT = 5.00 kV Signal A = 200nm EHT = 5.00 kV

Mag = 200.00 K X |—| WD= 3mm Photo No, Mag = 200.00 K X |—| WD= 3mm

« Significant improvement in resolution and LER — 15 mJ/cm? ng “
« Resist Formulation: 0.5:1 TPS-Tf.TPS-SbF, Scherrer
* LER (30) = 4.0 nm for 50 nm lines, 4.5 nm for 25 nm lines institute

« 22 nm lines resolve, limited by pattern collapse
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Testing Performance on MET Tool
41.0 mJ/cm? 35.8mJ/cm?  31.3 mJ/cm? 27.3 mJ/cm?

A = InLens Date (17 Sep 2013 InLens Date 17 Sep 2013 = InLens Date .17 Sep 2013 nLens Date 17 Sep 2013
Jo. = 1349 Time :14.14:55 Mag 1379 Time :14:31.44 Mag = 100 = 1359 Time :14:21.22 M 1383 Time :14:24.13 Mag = 100.00

« New studies carried out on MET tool at Berkeley using dipole

illumination with standard dark field mask
« First test was slightly overdosed — minimum dose was 27.3 mJ/cm? for
30 nm 1:1 lines shown above
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1:1 and 1:2 L:S Patterns
22 nm

@ « 30 nm and 22 nm L:S patterns resolve, but overdosed

‘s Georgia Institute of Technology School of Chemical & Biomolecular Engineering &




Dense 1:1 Line/Space Features
26 nm | 22nm

« 26 nm patterns on MET look good, but overdosed, a few bridges

« 22 nm and 20 nm dense features resolve, but much more bridging
defects and some line bending &




1:1 L:S Elbow Features o
30 nm 20 nm

EUV at
LBNL MET

« 30 nm dense elbow features look good, but slightly overdosed

« 20 nm elbow features resolve, but some pattern collapse/bridging
defects observed
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Dense Circle Features

30 nm 22 nm

EUV at

_ 20 nm LBNL MET
« 30 and 22 nm circle features look

good with minimal bridging
« 20 nm circle features have more

bridging defects, but appear to
adequately resolve
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Pushing Toward Sub 20 nm Resolution 19

Initial studies on these materials

suggest they potentially can obtain
sub-20 nm resolution

Un-optimized 2-CHEp appears to
have at least 15 nm intrinsic resolution
(resolution limited by x-link reaction)

The highest resolution materials (2-Ep

and 2-CHEp) have not yet been

investigated with additive or studied at
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Summary

* Negative tone molecular resists based on cross-linking
show promise to satisfy EUV patterning requirements for
22 nm and below

* Potential benefits include: superior mechanical strength,
Intrinsic diffusion control, low outgassing of resist, and
reduced swelling vs. polymers

« Controlling of cross-linking/polymerization by addition of

novel control additives is key enabler for improving
resolution and LER

« Standard illumination conditions on MET shows
capability for 20 nm resolution with dose-to-size less
than 25 mJ/cm>.

* Plenty of room for optimization still exists in already high
performing systems
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Questions
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Additional Slides
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Base Developable Designs — TPOE-3Ep 23

DUV Contrast Curves
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Partial functionalization allows aqueous base developed systems

Unigue opportunity for direct comparison of solvent vs. base development
Shows better contrast than 4-Ep, E, shifted away from 0 mJ/cm?,

 No measurable swelling from interferometry studies in solvent or base
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TPOE-3Ep 100 keV E-beam Patterns
BK 35 nm 1:2, LER =5.9

TMAH 100 nm, LER = 5.9

Georgia Institute of Technology

MIBK resolution comparable to 4-Ep
MIBK and TMAH have equivalent LER

Sensitivity and LER are very similar between
organic solvent and aqueous base develop,
but resolution is slightly better in solvent
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